

IRF044SMD

MECHANICAL DATA

Dimensions in mm (inches)

(0.035) 3.70 (0.146) min. 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 4.14 (0.1 3.84 (0.1 3 16.02 (0.631) 15.73 (0.619) 10.69 (0.421) 10.39 (0.409) 2 9.67 (0.381) 9.38 (0.369)

N-CHANNEL POWER MOSFET

VDSS **60V** I_{D(cont)} 34A R_{DS(on)} 0.040Ω

FEATURES

- HERMETICALLY SEALED SURFACE **MOUNT PACKAGE**
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 – Surface Mount Package

Pad 1 - Gate Pad 2 – Drain Pad 3 - Source

IRFNxxx also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

3.60 (0.142) Max.

0.50 (0.020) 0.26 (0.010)

V_{GS}	Gate – Source Voltage	±20V			
I_D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	34A			
I_D	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	21A			
I_{DM}	Pulsed Drain Current ¹	136A			
P_{D}	Power Dissipation @ T _{case} = 25°C	75W			
	Linear Derating Factor	0.6W/°C			
E _{AS}	Single Pulse Avalanche Energy ²	340mJ			
dv/dt	Peak Diode Recovery ³	4.5V/ns			
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C			
TL	Package Mounting Surface Temperature (for 5 sec)	300°C			
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.67°C/W			
R _{θJ-PCB}	Thermal Resistance Junction to PCB (Typical)	4°C/W			

Notes


1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) @ V_{DD} = 25V , L \geq 0.3mH , R_G = 25 Ω , Peak I_L = 34A , Starting T_J = 25°C

3) @ I $_{SD} \leq$ 34A , di/dt \leq 100A/ μs , $V_{DD} \leq$ BV $_{DSS}$, $T_{J} \leq$ 150°C , SUGGESTED R_{G} = 9.1Ω

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	•	<u>'</u>					
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	60			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C I _D = 1mA			0.68		V/°C	
ΔT _J	Breakdown Voltage							
R _{DS(on)}	Static Drain – Source On–State	V _{GS} = 10V			0.040	Ω		
	Resistance ¹	V _{GS} = 10V	= 10V I _D = 34A				0.050	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ 15V	I _{DS} = 21A	17			S(\O)	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0	$V_{DS} = 0.8BV_{DSS}$			25	μΑ	
			T _J = 125°C			250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V	-			100	0	
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$					⊢ nA	
	DYNAMIC CHARACTERISTICS	1 00						
C _{iss}	Input Capacitance	V _{GS} = 0			2400			
C _{oss}	Output Capacitance	V _{DS} = 25V			1100		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		230				
Q _g	Total Gate Charge ¹	V _{GS} = 10V	I _D = 34A				+	
		$V_{DS} = 0.5BV_{DS}$		39		88	nC	
Q _{gs}	Gate – Source Charge ¹	I _D = 34A		6.7		15		
Q _{gd}	Gate - Drain ("Miller") Charge 1	$V_{DS} = 0.5BV_{DSS}$		18		52	nC	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30V$ $I_{D} = 34A$				23	- - ns	
t _r	Rise Time					130		
t _{d(off)}	Turn-Off Delay Time					81		
t _f	Fall Time	$R_G = 9.1\Omega$	$\mathcal{L}_{G} = 9.1\Omega$			79		
	SOURCE - DRAIN DIODE CHARAC	TERISTICS	1					
I _S	Continuous Source Current					34		
I _{SM}	Pulse Source Current ²					136	- A	
V _{SD}	Diode Forward Voltage	I _S = 34A	T _J = 25°C					
		$V_{GS} = 0$		2.5		2.5	V	
t _{rr}	Reverse Recovery Time	I _F = 34A	T _J = 25°C			220	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μ	s V _{DD} ≤50V			1.6	μC	
t _{on}	Forward Turn-On Time				Negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8			
L _S	Internal Source Inductance (from centre	of source pad to end		2.8		⊣ nH		

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk